Bulgecin A as a β-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms
نویسندگان
چکیده
Genetic screening of Pseudomonas aeruginosa (PSDA) and Acinetobacter baumannii (ACB) reveals genes that confer increased susceptibility to β-lactams when disrupted, suggesting novel drug targets. One such target is lytic transglycosylase. Bulgecin A (BlgA) is a natural product of Pseudomonas mesoacidophila and a lytic transglycosolase inhibitor that works synergistically with β-lactams targeting PBP3 for Enterobacteriaceae. BlgA also weakly inhibits di-Zn2+ metallo-β-lactamases like L1 of Stenotrophomonas maltophilia. We hypothesized that because of its unique mechanism of action, BlgA could restore susceptibility to carbapenems in carbapenem-resistant PSDA (CR-PSDA) and carbapenem-resistant ACB, as well as ACB resistant to sulbactam. A BlgA-containing extract was prepared using a previously published protocol. CR-PSDA clinical isolates demonstrating a variety of carbapenem resistance mechanisms (VIM-2 carbapenemases, efflux mechanisms, and AmpC producer expression) were characterized with agar dilution minimum inhibitory concentration (MIC) testing and polymerase chain reaction. Growth curves using these strains were prepared using meropenem, BlgA extract, and meropenem plus BlgA extract. A concentrated Blg A extract combined with low concentrations of meropenem, was able to inhibit the growth of clinical strains of CR-PSDA for strains that had meropenem MICs ≥8 mg/L by agar dilution, and a clinical strain of an OXA-24 producing ACB that had a meropenem MIC >32 mg/L and intermediate ampicillin/sulbactam susceptibility. Similar experiments were conducted on a TEM-1 producing ACB strain resistant to sulbactam. BlgA with ampicillin/sulbactam inhibited the growth of this organism. As in Enterobacteriaceae, BlgA appears to restore the efficacy of meropenem in suppressing the growth of CR-PSDA and carbapenem-resistant ACB strains with a variety of common carbapenem resistance mechanisms. BlgA extract also inhibits VIM-2 β-lactamase in vitro. BlgA may prove to be an exciting adjunctive compound to extend the life of carbapenems against these vexing pathogens.
منابع مشابه
Prevalence of IMP and SPM Genes in Clinical Isolatesof Carbapenem Resistant Acinetobacter baumannii in Educational Hospitals of Sari, Iran
Background and purpose: Acinetobacter Baumannii is an opportunistic bacterium, which is considered as a concern in hospitals throughout the world due to high antibiotic resistance rate. The aim of this study was to investigate the prevalence of carbapenem resistance genes in clinical isolates of this bacterium. Materials and methods: In this study, 100 clinical isolates of Acinetobacter Bauman...
متن کاملEmergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals.
The aim of the present study was to investigate the molecular mechanism of carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates recovered from Libyan hospitals between April 2013 and April 2014. In total, 49 strains (24 P. aeruginosa and 25 A. baumannii) were isolated, including 21 P. aeruginosa and 22 A. baumannii isolates (87.75%) resistant to imipenem...
متن کاملblaVIM and blaIMP Genes Detection in Isolates of Carbapenem Resistant P. aeruginosa of Hospitalized Patients in Two Hospitals in Iran
Background & objective: Beta-lactam antibiotics resistance specifically Imipenem and Meropenem, the last choices of treatment, causes fatal events in patients with P.aeruginosa infection. The aim of this study was to detect the VIM and IMP of metallo-beta-lactamase genes in 103 isolates of P. aeruginosa in two Iranian hospitals. <strong...
متن کامل261Comparative in vitro Activity of Sitafloxacin and Other Antibiotics Against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii and Carbapenem-Resistant Pseudomonas aeruginosa by Disk Diffusion Method
متن کامل
Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007–2009)
BACKGROUND Multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii are common causes of health care associated infections worldwide. Carbapenems are effective against infections caused by multidrug resistant Gram-negative bacteria including Pseudomonas and Acinetobacter species. However, their use is threatened by the emergence of carbapenemase-producing strains. The aim of this ...
متن کامل